ORACLE DATAGUARD


Concept of Data Guard:
Oracle Data Guard ensures high availability, data protection, and disaster recovery for enterprise data. Data Guard provides a comprehensive set of services that create, maintain, manage, and monitor one or more standby databases to enable production Oracle databases to survive disasters and data corruptions. Data Guard maintains these standby databases as copies of the production database. Then, if the production database becomes unavailable because of a planned or an unplanned outage, Data Guard can switch any standby database to the production role, minimizing the downtime associated with the outage. Data Guard can be used with traditional backup, restoration, and cluster techniques to provide a high level of data protection and data availability.
Data Guard Configurations:
Data Guard configuration consists of one production database and one or more standby databases. The databases in a Data Guard configuration are connected by Oracle Net and may be dispersed geographically. There are no restrictions on where the databases are located, provided they can communicate with each other. For example, you can have a standby database on the same system as the production database, along with two standby databases on other systems at remote locations.
You can manage primary and standby databases using the SQL command-line interfaces or the Data Guard broker interfaces, including a command-line interface (DGMGRL) and a graphical user interface that is integrated in Oracle Enterprise Manager.

Primary Database:

A Data Guard configuration contains one production database, also referred to as the primary database, that functions in the primary role. This is the database that is accessed by most of your applications.
The primary database can be either a single-instance Oracle database or an Oracle Real Application Clusters (Oracle RAC) database.

Standby Databases:

A standby database is a transactionally consistent copy of the primary database. Using a backup copy of the primary database, you can create up to thirty standby databases and incorporate them in a Data Guard configuration. Once created, Data Guard automatically maintains each standby database by transmitting redo data from the primary database and then applying the redo to the standby database.
Similar to a primary database, a standby database can be either a single-instance Oracle database or an Oracle RAC database.
Types of standby databases:
Physical standby database:
  • Provides a physically identical copy of the primary database, with on disk database structures that are identical to the primary database on a block-for-block basis. The database schema, including indexes, are the same. A physical standby database is kept synchronized with the primary database, through Redo Apply, which recovers the redo data received from the primary database and applies the redo to the physical standby database.
As of Oracle Database 11g release 1 (11.1), a physical standby database can receive and apply redo while it is open for read-only access. A physical standby database can therefore be used concurrently for data protection and reporting.
  • Logical standby database
Contains the same logical information as the production database, although the physical organization and structure of the data can be different. The logical standby database is kept synchronized with the primary database through SQL Apply, which transforms the data in the redo received from the primary database into SQL statements and then executes the SQL statements on the standby database.
A logical standby database can be used for other business purposes in addition to disaster recovery requirements. This allows users to access a logical standby database for queries and reporting purposes at any time. Also, using a logical standby database, you can upgrade Oracle Database software and patch sets with almost no downtime. Thus, a logical standby database can be used concurrently for data protection, reporting, and database upgrades.
  • Snapshot Standby Database
A snapshot standby database is a fully updatable standby database.
Like a physical or logical standby database, a snapshot standby database receives and archives redo data from a primary database. Unlike a physical or logical standby database, a snapshot standby database does not apply the redo data that it receives. The redo data received by a snapshot standby database is not applied until the snapshot standby is converted back into a physical standby database, after first discarding any local updates made to the snapshot standby database.
A snapshot standby database is best used in scenarios that require a temporary, updatable snapshot of a physical standby database. Note that because redo data received by a snapshot standby database is not applied until it is converted back into a physical standby, the time needed to recover from a primary database failure is directly proportional to the amount of redo data that needs to be applied.



Data Guard Services

Redo Transport Services: Redo transport services control the automated transfer of redo data from the production database to one or more archival destinations.Redo transport services perform the following tasks
.Transmit redo data from the primary system to the standby systems in the configuration
·         Manage the process of resolving any gaps in the archived redo log files due to a network failure
·         Automatically detect missing or corrupted archived redo log files on a standby system and automatically retrieve replacement archived redo log files from the primary database or another standby database.
Apply Services: he redo data transmitted from the primary database is written to the standby redo log on the standby database. Apply services automatically apply the redo data on the standby database to maintain consistency with the primary database. It also allows read-only access to the data.
The main difference between physical and logical standby databases is the manner in which apply services apply the archived redo data:
·         For physical standby databases, Data Guard uses Redo Apply technology, which applies redo data on the standby database using standard recovery techniques of an Oracle database.
·         For logical standby databases, Data Guard uses SQL Apply technology, which first transforms the received redo data into SQL statements and then executes the generated SQL statements on the logical standby database

Role Transitions:

An Oracle database operates in one of two roles: primary or standby. Using Data Guard, you can change the role of a database using either a switchover or a failover operation.
switchover is a role reversal between the primary database and one of its standby databases. A switchover ensures no data loss. This is typically done for planned maintenance of the primary system. During a switchover, the primary database transitions to a standby role, and the standby database transitions to the primary role.
failover is when the primary database is unavailable. Failover is performed only in the event of a failure of the primary database, and the failover results in a transition of a standby database to the primary role. The database administrator can configure Data Guard to ensure no data loss.
The role transitions described in this documentation are invoked manually using SQL statements. You can also use the Oracle Data Guard broker to simplify role transitions and automate failovers using Oracle Enterprise Manager or the DGMGRL command-line interface

Data Guard Protection Modes

In some situations, a business cannot afford to lose data regardless of the circumstances. In other situations, the availability of the database may be more important than any potential data loss in the unlikely event of a multiple failure. Finally, some applications require maximum database performance at all times, and can therefore tolerate a small amount of data loss if any component should fail. The following descriptions summarize the three distinct modes of data protection.
  • Maximum availability This protection mode provides the highest level of data protection that is possible without compromising the availability of a primary database. Transactions do not commit until all redo data needed to recover those transactions has been written to the online redo log and to the standby redo log on at least one synchronized standby database. If the primary database cannot write its redo stream to at least one synchronized standby database, it operates as if it were in maximum performance mode to preserve primary database availability until it is again able to write its redo stream to a synchronized standby database.
This protection mode ensures zero data loss except in the case of certain double faults, such as failure of a primary database after failure of the standby database.
  • Maximum performance This is the default protection mode. It provides the highest level of data protection that is possible without affecting the performance of a primary database. This is accomplished by allowing transactions to commit as soon as all redo data generated by those transactions has been written to the online log. Redo data is also written to one or more standby databases, but this is done asynchronously with respect to transaction commitment, so primary database performance is unaffected by delays in writing redo data to the standby database(s).
This protection mode offers slightly less data protection than maximum availability mode and has minimal impact on primary database performance.
  • Maximum protection This protection mode ensures that no data loss will occur if the primary database fails. To provide this level of protection, the redo data needed to recover a transaction must be written to both the online redo log and to the standby redo log on at least one synchronized standby database before the transaction commits. To ensure that data loss cannot occur, the primary database will shut down, rather than continue processing transactions, if it cannot write its redo stream to at least one synchronized standby database.
Active Data Guard:
Active Data Guard is an option license for Oracle Database Enterprise Edition. Active Data Guard enables advanced capabilities that that extend basic Data Guard functionality. These include:
·         Real-Time Query - offload read-only workloads to an up-to-date standby database
·         Automatic Block Repair - automatic repair of physical corruption transparent to the user
·         Far Sync - zero data loss protection across any distance
·         Standby Block Change Tracking - enable incremental backups on an active standby
·         Active Data Guard Rolling Upgrade - make it simple to reduce planned downtime
·         Global Database Services - load balancing and service management across replicated databases.
************Please go for next section for step by step standby database configuration*********

1 comment:

  1. I read this article, it is really informative one. Your way of writing and making things clear is very impressive. Thanking you for such an informative article. Executive Protection Service Agency In Thailand

    ReplyDelete

thedbaportfolio@gmail.com